PHYSICS

Unless otherwise specified in the question, the following values should be used :
Mechanical equivalent of heat, $\mathrm{J}=4.2 \mathrm{~J} \mathrm{cal}^{-1}$
Acceleration due to gravity, $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Absolute zero teemperature $=-273{ }^{\circ} \mathrm{C}$
Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$
The following symbols usually carry meaning as given below :
ε_{0} : electric permittivity of free space
$\mu_{0}:$ magnetic permeability of free space
R : universal gas constant

প্রশ্নে অন্যব্রকম বলা না থাকলে, নীচেন্গ মানЖলি ব্যবহার্প কর্ৰতে হবে।
তাপের যাব্রিক তুল্যাঙ্ক, $\mathrm{J}=4.2 \mathrm{~J} \mathrm{cal}^{-1}$
অভিকর্ষজ্ তৃরণ, $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
পরমশূন্য উষ্ষতা $=-273^{\circ} \mathrm{C}$
শূन্য ছ্গনে আলোর বেগ $=3 \times 10^{8} \mathrm{~ms}^{-1}$
নীচের্র চিহ্থলি সাধার্রণভাবে নীচে প্রদত্ত অর্লে ব্যবহাए :
$\varepsilon_{0}:$ শूন্যস্গানের তড়িৎ-ভ্দ্যেতা
μ_{0} : শून্যझানের চৌম্বক ভেদ্যত
R : সর্বজনীন গ্যাস-খ্রুবক

Category-I (Q. 1 to 30)

Category-I : Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 4$ mark will be deducted.
 मिनে $1 / 4$ नষ্থ্র কাট̈ याবে।

1. A spherical convex surface of power 5 dioptre separates object and image space of refractive indices 1.0 and $\frac{4}{3}$ respectively. The radius of curvature of the surface is
(A) 20 cm
(B) 1 cm
(C) 4 cm
(D) 5 cm
 প্রতিবিম্ধ মাধ্যমকে পৃথক কর্রে। তাহলে গোলীয় তলের্র বळতত বাসাসাধ হবে
(A) 20 cm
(B) 1 cm
(C) 4 cm
(D) 5 cm
2. In Young's double slit experiment, light of wavelength λ passes through the double-slit and forms interference fringes on a screen 1.2 m away. If the difference between $3^{\text {rd }}$ order maximum and $3^{\text {rd }}$ order minimum is 0.18 cm and the slits are 0.02 cm apart, then λ is
(A) 1200 nm
(B) 450 nm
(C) 600 nm
(D) 300 nm

ইয়ং-এর দ্বি-র্রেখাছিদ্র পর্রীক্ষায় λ তর্পঙ্গদৈর্ঘ্যের আলো, ছিদ্র থেকে 1.2 m দূর্রের পর্দায় ব্যতিচার ঝালর তৈর্রি কর্রে। यদি ছিদ্র দুটির মধ্যেকার দৃরত্ধ 0.02 cm হয় এবং তৃতীয় উজ্জ্qল পটি ও তৃতীয় অж্ধকার পট্রি মষ্যেকার্র দূব্রত্ 0.18 cm হয়ে তবে λ এর মান হল
(A) 1200 nm
(B) 450 nm
(C) 600 nm
(D) 300 nm
3. A 12.5 ev electron beam is used to bombard gaseous hydrogen at ground state. The energy level upto which the hydrogen atoms would be excited is
(A) 2
(B) 3
(C) 4
(D) 1
12.5 ev শক্তিবিশিষ্ট ইলেকর্ট্রেন স্রোত দ্বার্রা ভৌমস্তরে থাকা গ্যাসীয় হাইড্রোজেনেরে সংঘর্ষ ঘটানো হল। সংघর্ষের্থ ফলে হাইড্রোজেন পর্রমাণু যে শক্তিন্তরেে উন্মীত হবে, তার মান
(A) 2
(B) 3
(C) 4
(ก) 1
4. Let $6^{r}, v, E$ be the radius of orbit, speed of electron and total energy of electron respectively in a H -atom. Which of the following quantities according to Bohr theory, is proportional to the quantum number n ?
(A) vr
(B) rE
(C) $\frac{r}{E}$
(D) $\frac{\mathrm{r}}{\mathrm{v}}$

হাইড্রোজেন পর্রমাণুর ক্ষেত্রে r, v, E যথাক্রমে কহ্巾পথের ব্যাসার, ইলেকট্টনের বেগ এবং ইলেকট্রনের্র মোট শক্তি সূচিত করে । নীচের কোন্ র্রাশিটি বোরের তত্তানুযায়ী, কোয়ান্টাম সংখ্যা n এর্থ সক্রে 100 সমানুপাতিক?
5.
(C) $\frac{r}{\mathrm{E}}$
(D) $\frac{r}{v}$
${ }_{2} \mathrm{OCM}^{(\mathrm{A})} \mathrm{vr}$
(B) rE
(A) vr

$$
N=19 \mathrm{v}
$$

What is the value of current through the diode in the circuit given?
n
(A) 0 mA
(B) 1 mA
(C) 19 mA
(D) 9 mA

চিত্রে প্রদর্শিত বর্তনীতে, ডায়োডের মধ্য দিয়ে প্রবাহমাত্রার মান হবে
(A) 0 mA
(B) 1 mA
(C) 19 mA
(D) 9 mA
6.

For the given logic circuit, the output Y for inputs $(A=0, B=1)$ and $(A=0, B=0)$ respectively are
(A) 0,0
(B) 0,1
(C) 1,0
(D) 1,1

চিত্রে প্রদর্শিত লজিক বর্তনীতে ইনপুট $(\mathrm{A}=0, \mathrm{~B}=1)$ ও $(\mathrm{A}=0, \mathrm{~B}=0)$ এর ক্ষেত্রে আউটপুট Y হল যथাক্রমে
(A) 0,0
(B) 0,1
(C) 1,0
(D) 1,1
7. From dimensional analysis, the Rydberg constant can be expressed in terms of electric charge (e), mass (m) and Planck constant (h) as [consider $\frac{1}{4 \pi \epsilon_{0}} \equiv 1$ unit]
(A) $\frac{\mathrm{h}^{2}}{\mathrm{me}^{2}}$
(B) $\frac{\mathrm{me}^{4}}{\mathrm{~h}^{2}}$
(C) $\frac{\mathrm{m}^{2} \mathrm{e}^{4}}{\mathrm{~h}^{2}}$
(D) $\frac{\mathrm{me}^{2}}{\mathrm{~h}}$

মার্রার নীতি অনুযায়ী, র্রিডবার্গ ধ্রবককে ইলেকট্টনের আধান (e), ভর (m) ও প্পাক্কের ধ্রবকের (h) সমন্বয়ে প্রকাশ কর্মলে তার র্যাশিমালা হবে ($\frac{1}{4 \pi \epsilon_{0}} \equiv 1$ একক ধরে নাও)
(A) $\frac{\mathrm{h}^{2}}{\mathrm{me}^{2}}$
(B) $\frac{\mathrm{me}^{4}}{\mathrm{~h}^{2}}$
(C) $\frac{\mathrm{m}^{2} \mathrm{e}^{4}}{\mathrm{~h}^{2}}$
(D) $\frac{\mathrm{me}^{2}}{\mathrm{~h}}$
8.

Three blocks are pushed with a force F across a frictionless table as shown in figure. Let N_{1} be the contact force between the left two blocks and N_{2} be the contact force between the right two blocks. Then
(A) $\mathrm{F}>\mathrm{N}_{1}>\mathrm{N}_{2}$
(B) $\mathrm{F}>\mathrm{N}_{2}>\mathrm{N}_{1}$
(C) $\quad \mathrm{F}>\mathrm{N}_{1}=\mathrm{N}_{2}$
(D) $\quad \mathrm{F}=\mathrm{N}_{1}=\mathrm{N}_{2}$

घর্ষণহীন একটি টেবিলের উপর্র র্রাখা চিত্রে দেখানো তিনটি ব্রকের উপর F বল প্রয়োগ করা হল। यদি বামদিকের্র ব্বকদুর্টির মধ্যে স্পর্শজনিত বল N_{1} उ ডানদিকের দুটি ব্লকের্র মধ্যে স্পর্শজনিত বল N_{2} হয় তবে
(A) F $>\mathrm{N}_{1}>\mathrm{N}_{2}$
(B) $\mathrm{F}>\mathrm{N}_{2}>\mathrm{N}_{1}$
(C) \quad F $>\mathrm{N}_{\mathrm{i}}=\mathrm{N}_{2}$
(D) $\quad \mathrm{F}=\mathrm{N}_{1}=\mathrm{N}_{2}$
9.

k

A block of mass m slides with speed v on a frictionless table towards another stationary block of mass m . A massless spring with spring constant k is attached to the second block as shown in figure. The maximum distance the spring gets compressed through is
(A) $\sqrt{\frac{m}{k}} \mathrm{v}$
(B) $\sqrt{\frac{\mathrm{m}}{2 \mathrm{k}}} \mathrm{v}$
(C) $\sqrt{\frac{k}{m}} \mathrm{v}$
(D) $\sqrt{\frac{k}{2 m}} v$

একটি মসৃণ টেবিলের্র উপর্র m ভর্রের একটি র্রক v বেগে অপর একটি m ভর্রের স্ছির র্木কের দিকে ধাবমান। স্থিন্র ব্রকটিন্র সাথে k স্প্রিং ধ্রেবক বিশিষ্ট একটি স্প্রিং আটকানো আছে (চিত্রে প্রদর্শিত)। স্প্রিংটির সক্কোচনেন্র সবোচ্চ পব্রিমাণ হবে
(A) $\sqrt{\frac{m}{k}} \mathrm{v}$
(B) $\sqrt{\frac{\mathrm{m}}{2 k}} \mathrm{v}$
(C) $\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \mathrm{v}$
(D) $\sqrt{\frac{\mathrm{k}}{2 \mathrm{~m}}} \mathrm{v}$

The acceleration vs distance graph for a particle moving with initial velocity $5 \mathrm{~m} / \mathrm{s}$ is
shown in the figure. The velocity of the particle at $x=35 \mathrm{~m}$ will be
(A) $20.62 \mathrm{~m} / \mathrm{s}$
(B) $20 \mathrm{~m} / \mathrm{s}$
(C) $25 \mathrm{~m} / \mathrm{s}$
(D) $50 \mathrm{~m} / \mathrm{s}$

চিত্রে একটি গতিশীল কণার ত্রণ-সর্গন লেখচিত্র দেখানো হয়েছে। কণাটি্র প্রাথমিক বেগ $5 \mathrm{~m} / \mathrm{s}$ । যथन
$x=35 \mathrm{~m}$, তখন কণাঢির্গ গতিবেগ হবে
(A) $20.62 \mathrm{~m} / \mathrm{s}$
(B) $20 \mathrm{~m} / \mathrm{s}$
(C) $25 \mathrm{~m} / \mathrm{s}$
(D) $50 \mathrm{~m} / \mathrm{s}$
11. A simple pendulum, consisting of a small ball of mass m attached to a massless string hanging vertically from the ceiling, is oscillating with an amplitude such that $T_{\text {max }}=2 \mathrm{~T}_{\text {min }}$ where $\mathrm{T}_{\text {max }}$ and $\mathrm{T}_{\text {min }}$ are the maximum and minimum tension in the string respectively. The value of maximum tension $T_{\max }$ in the string is
(A) $\frac{3 \mathrm{mg}}{2}$
(B) mg
(C) $\frac{3 \mathrm{mg}}{4}$
(D) 3 mg
m ভর্রের একটি फूদ্র গোলকের সর্रল দোলক একটি ভরহীন সুতোর সাহায্যে সিলিং থেকে ঝোলানো आছে । দোলকটির দোলনকালে $\mathrm{T}_{\text {max }}=2 \mathrm{~T}_{\text {min }}$ হয়, যেখানে $\mathrm{T}_{\max }$ ও $\mathrm{T}_{\min }$ হল যथাক্রুমে সুতোট্রি সর্বোচচ ও সর্বনিম্ন টান। সেক্ষেত্রে সর্বোচ্চ টান $T_{\text {max }}$-এর মান হবে
(A) $\frac{3 \mathrm{mg}}{2}$
(B) mg
(C) $\frac{3 \mathrm{mg}}{4}$
(D) 3 mg
12. In case of projectile motion, which one of the following figures represent variation of horizontal component of velocity $\left(u_{x}\right)$ with time t ? (assume that air resistance is negligible)
প্রাসের্র ক্ষেন্রে, গতিবেগের অনুভূমিক উপাংশ $\left(u_{x}\right)$ সময়ের (t) সাথে যেভাবে পরিবর্তিত হয় তা নিচের কোন্ চিত্রের অনুর্রপ ?
(A)

(B)

$y=v^{2} \sin ^{2} \theta$
(C)

(D)

13. A uniform thin rod of length L, mass m is lying on a smooth horizontal table. A horizontal impulse P is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is
(A) $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
(B) $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
(C) $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
(D) $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$

একটি m ভর ও L দৈর্ঘ্যেব্র সুষম দণ্ড একটি মসৃণ সমতল টেবিলের্র উপর্র র্রাখা আছে। দণ্ডটিব্র একটি
(A) $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
(B) $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
(C) $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
(D) $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
14. Centre of mass (C.M.) of three particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg lies at the point $(1,2,3)$ and C.M. of another system of particles of 3 kg and 2 kg lies at the point $(-1,3,-2)$. Where should we put a particle of mass 5 kg so that the C.M. of entire system lies at the C.M. of the first system?
(A) $(3,1,8)$
(B) $(0,0,0)$
(C) $(1,3,2)$
(D) $(-1,2,3)$
$1 \mathrm{~kg}, 2 \mathrm{~kg}$ ও 3 kg ভর্রের একটি কণাসং স্ছার ভর্পকেন্দ্র $(1,2,3)$ বিन্দুতে আছে। $3 \mathrm{~kg} ও 2 \mathrm{~kg}$ ভর্রের অপর্র একটি কণাসংস্|ার ভর্রকেন্দ্র $(-1,3,-2)$ বিন্দূতে অরস্থিত। 5 kg ভর্রের্গ অন্য একটি ব্তুকে কোথায়

(A) $(3,1,8)$
(B) $(0,0,0)$
(C) $(1,3,2)$
(D) $(-1,2,3)$
15. A body of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ is dropped from rest from a height 1 m into a liquid of density $2.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Neglecting all dissipative effects, the maximum depth to which the body sinks before returning to float on the surface is
(A) 0.1 m
(B) 1 m
(C) 0.01 m
(D) 2 m

 আগে ব্ষ্ুটটি যে সর্বোচচ গভীব্নতা পর্যন্ত গমন করে তার মান
(A) 0.1 m
(B) 1 m
(C) 0.01 m
(D) 2 m

PC-2021

16. Two solid spheres S_{1} and S_{2} of same uniform density fall from rest under gravity in a viscous medium and after some time, reach terminal velocities v_{1} and v_{2} respectively. If ratio of masses $\frac{m_{1}}{m_{2}}=8$, then $\frac{v_{1}}{v_{2}}$ will be equal to
(A) 2
(B) 4
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

সমান घনত্ৰেব্র দুটি ধাতব গোলক S_{1} ও S_{2} একটি সান্দ্র মাধ্যমের মধ্যে স্থিন্রাবস্ছা থেকে অভিকর্ষজ বলেব্র প্রভাবে পতনশীল। কিছুক্ষণ পর্গ তাদের্র প্রান্তীয় বেগেে্র মান হয় v_{1} ও v_{2} । তাদের্র ভর্রের্র অনুপাত $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=8$ হলে $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$-এর মান হবে
(A) 2
(B) 4
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
17.

In the given figure, 1 represents isobaric, 2 represents isothermal and 3 represents adiabatic processes of an ideal gas. If $\Delta \mathrm{U}_{1}, \Delta \mathrm{U}_{2}, \Delta \mathrm{U}_{3}$ be the changes in internal energy in these processes respectively, then
(A) $\Delta \mathrm{U}_{1}<\Delta \mathrm{U}_{2}<\Delta \mathrm{U}_{3}$
(B) $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{3}<\Delta \mathrm{U}_{2}$
(C) $\Delta \mathrm{U}_{1}=\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
(D) $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$

প্রদত্ত চিত্রে আদর্শ গ্যাসের্র সমচাপ (1), সমোষ্ণ (2) ও র্রদ্ধতাপ (3) প্রক্রিয়াঙ্লি দেখানো হয়েছে। यদি এই প্রক্রিয়াগ্লিতে আন্তর্নশত্তিব পর্রিবর্তন যथাক্রমে $\Delta \mathrm{U}_{1}, \Delta \mathrm{U}_{2}$ ও $\Delta \mathrm{U}_{3}$ হয়, তবে
(A) $\Delta \mathrm{U}_{1}<\Delta \mathrm{U}_{2}<\Delta \mathrm{U}_{3}$
(B) $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{3}<\Delta \mathrm{U}_{2}$
(C) $\Delta \mathrm{U}_{1}=\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
(D) $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
18. If pressure of real gas O_{2} in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then the mass of the gas in the container is
(A) 32 gm
(B) 16 gm
(C) 4 gm
(D) 64 gm

একটি পাত্রে র্রাখা কিছু পব্রিমান বাত্তব গ্যাস $\mathrm{O}_{2}-$-এর চাপ $\mathrm{P}=\frac{\mathrm{RT}}{2 \mathrm{~V}-\mathrm{b}}-\frac{\mathrm{a}}{4 \mathrm{~b}^{2}}$, সমীকন্ণণঢি মেনে চলে। সেক্কেত্রে পাত্রে র্রাখা গ্যাসের ভর্র হল
(A) 32 gm
(B) 16 gm
(C) 4 gm
(D) 64 gm
19. 300 gm of water at $25^{\circ} \mathrm{C}$ is added to 100 gm of ice at $0^{\circ} \mathrm{C}$. The final temperature of the mixture is
(A) $12.5^{\circ} \mathrm{C}$
(B) $0^{\circ} \mathrm{C}$
(C) $25^{\circ} \mathrm{C}$
(D) $50^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ উষ্ণতায় 100 gm বরফকে $25^{\circ} \mathrm{C}$ উষ্ণতায় 300 gm জলে ফেলা হ'ল। মিশ্রণের্র অন্তিম উষ্ণতা হবে
(A) $12.5^{\circ} \mathrm{C}$
(B) $0{ }^{\circ} \mathrm{C}$
(C) $25{ }^{\circ} \mathrm{C}$
(D) $50^{\circ} \mathrm{C}$
20.

The variation of electric field along the Z-axis due to a uniformly charged circular ring of radius ' a ' in XY plane is shown in the figure. The value of coordinate M will be
(A) $\frac{1}{2}$
(B) $\sqrt{2}$
(C) 1
(D) $\frac{1}{\sqrt{2}}$

সুষমভাবে আহিত একটি ‘a' ব্যাসার্ধের বৃত্তাকার র্রিং XY সমতলে আছে। র্রিং-এর অক্ষেন্র উপর কেন্দ্র থেকে Z দृद্রত্থে তড়িৎপ্রাবল্যের পর্রিবর্তন চিত্রে দেখানো হয়েছে । M বিন্দूর ছ্গানাক্ক হন
(A) $\frac{1}{2}$
(B) $\sqrt{2}$
(C) 1
(D) $\frac{1}{\sqrt{2}}$
21. A metal sphere of radius R carrying charge q is surrounded by a thick concentric metal shell of inner and outer radii a and b respectively. The net charge on the shell is zero. The potential at the centre of the sphere, when the outer surface of the shell is grounded will be
(A) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)$
(B) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}} \frac{1}{\mathrm{a}}$
(C) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{a}}\right)$
(D) $\frac{q}{4 \pi \epsilon_{0}} \frac{1}{R}$

একটি q आधান সম্পন্ন R ব্যাসার্ধের ধাত্ব গোলক অপর্গ একটি সমকেন্দ্রিক ন্ত্তিড়ি ধাতব খোলক দ্বার্রা পর্রিবৃত আছে । খোলকেন্র ভিতর্রের পৃষ্ঠের ব্যাসার্ধ a ও বাইর্রের পৃষ্ঠের ব্যাসার্ধ b. থোলকটির মোট আধান শূণ্য। খোলকের্গ বাইর্রেন পৃষ্ঠ ভূ-সংলঞ্ম কর্রা হলে গোলকের কেল্দ্রে তড়ি-বিভবের মান হবে
(A) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)$
(B) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}} \frac{1}{\mathrm{a}}$
(C) $\frac{\mathrm{q}}{4 \pi \epsilon_{0}}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{a}}\right)$
(D) $\frac{q}{4 \pi \epsilon_{n}} \frac{1}{R}$
22. Three infinite plane sheets carrying uniform charge densities $-\sigma, 2 \sigma, 4 \sigma$ are placed parallel to XZ plane at $\mathrm{Y}=\mathrm{a}, 3 \mathrm{a}, 4 \mathrm{a}$ respectively. The electric field at the point $(0,2 \mathrm{a}, 0)$ is
(A) $\frac{5 \sigma}{2 \varepsilon_{0}} \hat{\mathrm{j}}$
(B) $-\frac{7 \sigma}{2 \varepsilon_{0}} \hat{\mathrm{j}}$
(C) $\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathrm{j}}$
(D) $\frac{5 \sigma}{-2 \varepsilon_{0}} \hat{\mathrm{j}}$

তিনটি অসীম ব্স্থৃতির সমতল পাতের্থ তলমাত্রিক ঘনত্ন $-\sigma, 2 \sigma$ ও 4σ এবং তিনটি পাত XZ সমতলে সমান্তর্রাল ভাবে যथাক্রমে $\mathrm{Y}=\mathrm{a}, 3 \mathrm{a}$ ও 4 a তে অবश्शিত। পাতঋলিন্র জন্য $(0,2 \mathrm{a}, 0)$ বিन्দूতে তড়িৎপ্রাবল্য হবে
(A) $\frac{5 \sigma}{2 \varepsilon_{0}} \hat{j}$
(B) $-\frac{7 \sigma}{2 \varepsilon_{0}} \hat{\mathrm{j}}$
(C) $\frac{\sigma}{2 \varepsilon_{0}} \hat{j}$
(D) $\frac{5 \sigma}{-2 \varepsilon_{0}} \hat{\mathrm{j}}$
23. Two point charges $+q_{1}$ and $+q_{2}$ are placed a finite distance ' d ' apart. It is desired to put a third charge q_{3} in between these two charges so that q_{3} is in equilibrium. This is
(A) possible only if q_{3} is negative.
(B) possible only if q_{3} is positive.
(C) possible irrespective of the sign of q_{3}.
(D) not possible at all.
 आधানের্র অন্তর্বর্তী স্ছানে ব্রাখলে q_{3} সাম্যবস্ছায় থাকে। এটি সম্ভব
(A) यদি q_{3} ঋণাত্ম হয়।
(B) यमि q_{3} ধनাত্মক হয়।
(C) q_{3}-এর্র চিহেন্র উপর নির্ভর্নশীল নয়।
(D) সাম্যবস্থা সম্ভবপর নয়।

24.

$$
E=\frac{1}{2 n C c} M
$$

Consider two infinitely long wires parallel to Z-axis carrying same current I in the positive Z direction. One wire passes through the point L at coordinates $(-1,+1)$ and the other wire passes through the point M at coordinates $(-1,-1)$. The resultant magnetic field at the origin O will be
(A) $\frac{\mu_{0} I}{2 \sqrt{2} \pi} \hat{\mathrm{j}}$
(B) $\frac{\mu_{0} I}{2 \pi} \hat{j}$
(C) $\frac{\mu_{0} I}{2 \sqrt{2} \pi} \hat{i}$
(D) $\frac{\mu_{0} I}{4 \pi} \hat{i}$
Z অल্লেন্র সমান্তরাল দুটি অসীম দৈর্ম্যের ঋজ্জ তার্রের মধ্য দিয়ে ধনাত্যক Z অক্ষ বরাবর I প্রবাহমাত্রা যায়।
 গমন কর্রে। মূলবিন্দ̆ O তে এই দুই তার্নের জন্য লক্ক চৌম্বক প্রাবল্যের মান হবে
(A) $\frac{\mu_{0} I}{2 \sqrt{2} \pi} \hat{\mathrm{j}}$
(B) $\frac{\mu_{0} \mathrm{I}}{2 \pi} \hat{\mathrm{j}}$
(C) $\frac{\mu_{0} I}{2 \sqrt{2} \pi} \hat{i}$
(D) $\frac{\mu_{0} \mathrm{I}}{\Delta_{\pi}} \hat{\mathrm{i}}$
25. A thin charged rod is bent into the shape of a small circle of radius R the charge per unit length of the rod being λ. The circle is rotated about its axis with a time period T and it is found that the magnetic field at a distance ' d ' away ($d \gg R$) from the center and on the axis, varies as $\frac{R^{m}}{d^{n}}$ The values of m and n respectively are
(A) $\mathrm{m}=2, \mathrm{n}=2$
(B) $\mathrm{m}=2, \mathrm{n}=3$
(C) $\mathrm{m}=3, \mathrm{n}=2$
(D) $\mathrm{m}=3, \mathrm{n}=3$

একটি আহিত সর্থ দম্ডকে R ব্যাসার্ধের একটি ক্কুদ্র বৃত্তে পর্রিণত কর্গা হল এবং প্রতি একক দৈর্ঘ্যে দভ্ডের্র আখানের পর্রিমাণ λ । বৃত্তটিকে তার অক্巾 বরাবর T পর্যায়কাল নিয়ে ঘোর্রানো হলে দেখা যায়, কেন্দ্র থেকে অক্ষ বর্রাবর দূর্ৰত্ $d-$ তে ($d \gg R$) চৌম্বকপ্রাবল্য হয় $\frac{R^{m}}{d^{n}}$ । সেক্ষেত্রে m এবং n এর্র মান যथাক্রমে
(A) $\mathrm{m}=2, \mathrm{n}=2$
(B) $\mathrm{m}=2, \mathrm{n}=3$
(C) $\mathrm{m}=3, \mathrm{n}=2$
(D) $\mathrm{m}=3, \mathrm{n}=3$
26.

For two types of magnetic materials A and B , variation of $\frac{1}{\chi}(\chi$: susceptibility $)$ vs. temperature T is shown in the figure. Then
(A) A is diamagnetic and B is paramagnetic.
(B) A is feromagnetic and B is diamagnetic.
(C) A is paramagnetic and B is feromagnetic.
(D) A is paramagnetic and B is diamagnetic.

দूढ匕 চৌম্বকীয় পদার্থ A এরং B এর ক্কেত্রে তাপমাত্রা T এর সাথে $\frac{1}{\chi}(\chi$: চৌম্বক প্রবণতা)-এর পর্বিবর্তন চিত্রে দেখানো হয়েছে।সেক্সেত্রে
(A) A তিব্রக্চৌম্বক এবং B পর্রাচৌম্বক
(B) A অয়শ্চৌম্বক এবং B তিব্বশ্চৌম্বক
(C) A পর্রাচৌম্বক এবং B অয়চৌৌম্বক
(D) A পর্রাচ্টৗম্বক এবং B তির্রकৌীমক
27.

The rms value of potential difference v shown in the figure is
(A) $\frac{v_{0}}{2}$
(B) v_{0}
(C) $\frac{\mathrm{v}_{0}}{\sqrt{3}}$
(D) $\frac{v_{0}}{\sqrt{2}}$

চিত্রে প্রদর্শিত তড়িচচালকবল-সময় লেখচিত্রে তড়িচ্চালক বলের rms মান হবে
(A) $\frac{\mathrm{v}_{0}}{2}$
(B) v_{0}
(C) $\frac{v_{0}}{\sqrt{3}}$
(D) $\frac{\mathrm{v}_{0}}{\sqrt{2}}$
28.

$$
24 \times 10^{3} \pm 20^{\infty} \%
$$

A carbon resistor with colour code is shown in the figure. There is no fourth band in the resistor. The value of the resistance is
(A) $24 \mathrm{M} \Omega \pm 20 \%$
(B) $14 \mathrm{k} \Omega \pm 5 \%$
(C) $24 \mathrm{k} \Omega \pm 20 \%$
(D) $34 \mathrm{k} \Omega \pm 10 \%$

একটি কার্বন র্রোধকের্প ব্রঙিন বন্ধনীپলি চিত্রে দেখানো হয়েছে । ত্রোধকে কোন চতুর্থ র্রঙিন বন্ধনী নেই। त্রোধকটি্র র্রোধ হল
(A) $24 \mathrm{M} \Omega \pm 20 \%$
(B) $14 \mathrm{k} \Omega \pm 5 \%$
(C) $24 \mathrm{k} \Omega \pm 20 \%$
(D) $34 \mathrm{k} \Omega \pm 10 \%$
29.

Consider a pure inductive A.C. circuit as shown in the figure. If the average power
consumed is P , then
(A) $\mathrm{P}>0$
(B) $\mathrm{P}<0$
(C) $\mathrm{P}=0$
(D) P is infinite

কেবল आবেশক সহ চিত্রে প্রদর্শিত A.C. বর্তনীটি বিবেচনা কর। গড় ক্ষমতা P হলে,
(A) $\mathrm{P}>0$
(B) $\mathrm{P}<0$
(C) $\mathrm{P}=0$
(D) P-এর মান অসীম
30.

The cross-section of a reflecting surface is represented by the equation $x^{2}+y^{2}=R^{2}$ as shown in the figure. A ray travelling in the positive x direction is directed toward positive y direction after reflection from the surface at point M . The coordinate of the point M on
the reflecting surface is
(A) $\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$
(B) $\left(-\frac{\mathrm{R}}{2},-\frac{\mathrm{R}}{2}\right)$
(C) $\left(-\frac{R}{\sqrt{2}}, \frac{\mathrm{R}}{\sqrt{2}}\right)$
(D) $\left(\frac{\mathrm{R}}{\sqrt{2}},-\frac{\mathrm{R}}{\sqrt{2}}\right)$

তাহलে M বিन्দूর হানাক হল
(A) $\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$
(B) $\left(-\frac{\mathrm{R}}{2},-\frac{\mathrm{R}}{2}\right)$
(C) $\left(-\frac{\mathrm{R}}{\sqrt{2}}, \frac{\mathrm{R}}{\sqrt{2}}\right)$
(D) $\left(\frac{\mathrm{R}}{\sqrt{2}},-\frac{\mathrm{R}}{\sqrt{2}}\right)$

Category-II (Q 31 to 35)
 Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 2$ mark will be deducted. এবটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবো ভুল উত্তর্থ দিলে অথবা যে কোন একাধিক উত্তর্র দিলে $1 / 2$ নম্বর্থ কাটা যাবে।
 31. For a plane electromagnetic wave, the electric field is given by

$\overrightarrow{\mathrm{E}}=90 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{v} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be একটি সমতল তড়িৎমম্বকীয় তর্রক্গের ক্ষেত্রে, তড়িৎক্ষেত্র E এর ব্যঞ্জক হল
$\overrightarrow{\mathrm{E}}=90 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{v} / \mathrm{m}$. চৌম্বकক্ষেত্র $\overrightarrow{\mathrm{B}}$ এর ব্যঞ कটি হবে
(A). $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{i}} \mathrm{T}$
(B) $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j}} \mathrm{T}$
(C) $\overrightarrow{\mathrm{B}}=27 \times 10^{9} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} ~ T}$
$R=P-\frac{l}{A}=\frac{1}{\sigma}$
(D) $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{T}$
32. Two metal wires of identical dimensions are connected in series. If σ_{1} and σ_{2} are the electrical conductivities of the metal wires respectively, the effective conductivity of the combination is
(A) $\sigma_{1}+\sigma_{2}$
(B) $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
(C) $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
(D) $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$

একই আকার্রের দুটি ধাতব তাব্রকে শ্রেনী সমবায়ে যুক্ত করা হল। यদি দুটি তার্নের তড়িৎ পরিবাহিতাঙ্ক σ_{1} এবং σ_{2} হয়, তবে এই সমবায়ের্র তুল্য পব্রিবাহিতাক্ক হবে
(A) $\sigma_{1}+\sigma_{2}$
(B) $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
(C) $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
(D) $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$
33. A uniform rod of length L pivoted at one end P is freely rotated in a horizontal plane with an angular velocity ω about a vertical axis passing through P. If the temperature of the system is increased by ΔT, angular velocity becomes $\frac{\omega}{2}$. If coefficient of linear expansion of the rod is $\alpha(\alpha \ll 1)$, then ΔT will be
(A) $\frac{1}{\alpha}$
(B) $\frac{1}{2 \alpha}$
(C) $\frac{1}{4 \alpha}$
(D) α

এবটি প্রাষ্ট P বিন্দূত আটকানো অবস্ইায় L দৈর্ঘ্যের একটি সুষম দভ্ডকে ω কৌণিক রেগে অনুভূমিক তলে
 কৌণিক বেগের মান হয় $\frac{\omega}{2}$ । यमि দভ্ডের দৈর্ঘ্য প্রসার্রণ ऊনাক্ক $\alpha(\alpha \ll 1)$ হয় তবে ΔT এর মান হল
(A) $\frac{1}{\alpha}$
(B) $\frac{1}{2 \alpha}$
" (C) $\frac{1}{4 \alpha}$

- (D) α

34. An ideal gas of molar mass M is contained in a very tall vertical cylindrical column in the uniform gravitational field. Assuming the gas temperature to be T, the height at which the centre of gravity of the gas is located is (R: universal gas constant)
(A) $\frac{\mathrm{RT}}{\mathrm{g}}$
(B) $\frac{\mathrm{RT}}{\mathrm{Mg}}$
(C) MgR
(D) RTg

একটি সুষম অভিকর্ষ ক্ষেত্রে খুব লম্ধা, খাড়া চোঙ্রে মধ্যে M আণবিক ভব্রসমপন্ন আদর্শ গ্যাস আবদ্ধ আছে। গ্যাসের্র তাপমাত্রা T ধরে নিলে, সমগ্র গ্যাসের্র ভারকেন্দ্র যে উচ্চতায় থাকবে তার্র মান (R: সার্বজনীন গ্যাস ধ্রবক)
(A) $\frac{\mathrm{RT}}{\mathrm{g}}$
(B) $\frac{\mathrm{RT}}{\mathrm{Mg}}$
(C) MgR
(D) RTg
35. Under isothermal conditions, two soap bubbles of radii a and b coalesce to form a single bubble of radius c. If the external pressure is P, then surface tension of the bubbles is
(A) $\frac{P\left(c^{3}-a^{3}+b^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
(B) $\frac{P\left(c^{3}-a^{3}-b^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
(C) $\frac{P\left(c^{2}+a^{2}-b^{2}\right)}{4\left(a^{3}+b^{3}-c^{3}\right)}$
(D) $\frac{P\left(a^{3}+b^{3}-c^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
a এবং b ব্যাসার্ধের্র দুট্ট সাবানের্র বুদবুদ সমোষ্ণ প্রক্রিয়ায় একাब্মিত হয়ে c ব্যাসার্ধের একটি বুদবুদ তৈরি কब্रल। यमि বাহ্যিক চাপ P হয়, তবে বুদবুদের্র পৃষ্ঠটান হবে
(A) $\frac{\mathrm{P}\left(\mathrm{c}^{3}-\mathrm{a}^{3}+\mathrm{b}^{3}\right)}{4\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)}$
(B) $\frac{P\left(c^{3}-a^{3}-b^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
(C) $\frac{\mathrm{P}\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{4\left(\mathrm{a}^{3}+\mathrm{b}^{3}-\mathrm{c}^{3}\right)}$
(D) $\frac{P\left(a^{3}+b^{3}-c^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$

$$
\text { Category - III (Q } 36 \text { to 40) }
$$

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score $=2 \times$ number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

36.

A small bar magnet of dipole moment M is moving with speed v along x direction towards a small closed circular conducting loop of radius ' a ' with its centre O at $x=0$ (see figure). Assume $x \gg \mathrm{a}$ and the coil has a resistance R . Then which of the following statement(s) is/are true ?
(A) Magnetic field at the centre O of the circular coil due to the bar magnet is $\frac{M}{x^{3}}$
(B) Induced EMF is proportional to $\frac{1}{x^{4}}$
(C) The magnetic moment μ due to induced current in the coil is proportional to a^{4}
(D) The heat produced is proportional to $\frac{1}{x^{6}}$

M চৌম্বকভ্রামক সশ্পন্ম একটি फ़ूদ্র দম্ডমूম্ব x অक्ष ব্রাব্র v বেগে ' a ' ব্যাসার্ধের্গ একটি বৃতাকার্র পর্থিবাহী লুপের দিকে গতিশীল। লুপের কেন্দ্র $\mathrm{O}, x=0$ বিন্দূতে আছে। ধরেে নাও $x>\mathrm{a}$ এ্থ নুপের্র র্রোধ R । তবে নীচের কোন্ উক্তি/উক্তিঞলি সত্য ?
(A) দন্ড চুম্বকের জন্য বৃত্তাকার্গ লুপের কেন্দ্রে উৎপন্ন ছুম্বকক্小েত্র হল $\frac{\mathrm{M}}{x^{3}}$
(B) आবिষ তড়িচচালক বল $\frac{1}{x^{4}}$-এর সমানুপাতিক।
(C) नूপের মধ্যে আবিষ্ট তডিৎপ্রবাহের জন্য উড্ডত চৌম্বক ভ্রামক a^{4}-এর সমানুপাতিক।

v
(D) উৎপন্ন তাপশক্তি $\frac{1}{x^{6}}$-এর সমানপাতিক।
37. Electric field component of an $E M$ radiation varies with time as $E=a\left(\cos \omega_{0} t+\sin \omega t\right.$ $\cos \omega_{0} t$), where ' a ' is a constant and $\omega=10^{15} \sec ^{-1}, \omega_{0}=5 \times 10^{15} \sec ^{-1}$. This radiation falls on a metal whose stopping potential is -2 ev . Then which of the following Statement (s) is/are true? $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{S}\right)$
(A) For light of frequency ω, photoelectric effect is not possible
(B) Stopping potential vs. frequency graph will be a straight line
(C) The work function of the metal is -2 ev .
(D) The maximum kinetic energy of the photo electrons is 1.95 ev .

একটি তড়িৎমম্বকীয় বিকিব্রণের তড়িৎক্ষেত্র $\mathrm{E}=\mathrm{a}\left(\cos \omega_{0} \mathrm{t}+\sin \omega \mathrm{t} \cos \omega_{0} \mathrm{t}\right)$ <্রপে পর্রিবতির্ত হয়। এখানে ' a ' একটি ধ্রেবক, $\omega=10^{15} \sec ^{-1} ও \omega_{0}=5 \times 10^{15} \mathrm{sec}^{-1}$ । এই বিকিন্রণ একটি -2 ev निर्রোধী বিভব সম্পন্ন ধাতব পাত্রে উপর্ আপতিত হয়। তবে নীচের কোন্ উক্তি/উক্ত্ুলি সত্য?

$$
\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{S}\right)
$$

(A) ω কস্পাঙ্কের বিকির্রণের জন্য আলোক তড়িৎ ক্রিয়া সম্ভবপর নয়।
(B) নিত্রোধী বিভব ও কম্পাক্কের লেখচিত্র একটি সর্ললর্রেখা।
(C) ধাতুর্র কার্য অপেক্কক -2 ev ।
(D) উৎপন্ন ইলেকর্টনের্র সর্বোচ্চ গতিশক্তি 1.95 ev ।
38.

Consider the $\mathrm{P}-\mathrm{V}$ diagram for 1 mole of an ideal monatomic gas shown in the figure.
Which of the following statements is/are true ?
(A) The change in internal energy for the whole process is zero.
(B) Heat is rejected during the process.
(C) Change in internal energy for process $A \rightarrow B$ is $-\frac{3}{2} P_{0} V_{0}$
(D) Work done by the gas during the entire process is $2 \mathrm{P}_{0} \mathrm{~V}_{0}$

এক মোল একটি আদর্গ এক পরমানুক গ্যাসের P - V লেখচিত্র দেখানো হয়েছে । কোন্ উক্তি/উক্তিঔলি
সण्य?
(A) সমগ্র প্রক্রিয়ায় आন্তর্রশক্তির পর্রিবর্তন শूন্য।
(B) প্রক্রিয়াট্তিতে তাপশক্তি বর্জিত হয়।
(C) $\mathrm{A} \rightarrow \mathrm{B}$ প্রক্রিয়ায়া आাত্তর্নশক্তিন্র পরিবির্তন- $\frac{3}{2} \mathrm{P}_{0} \mathrm{~V}_{0}$
(D) সমগ্র প্রক্রিয়ায় গ্যাস कर्ट्रक কৃणाকার্য $2 \mathrm{P}_{0} \mathrm{~V}_{0}$
39. The potential energy of a particle of mass 0.02 kg moving along x -axis is given by $\mathrm{V}=\mathrm{Ax}(x-4) \mathrm{J}$ where x is in metres and A is a constant. Which of the following is/are correct statement(s) ?
(A) The particle is acted upon by a constant force.
(B) The particle executes simple harmonic motion.
(C) The speed of the particle is maximum at $x=2 \mathrm{~m}$.
(D) The period of oscillation of the particle is $\frac{\pi}{5} \mathrm{sec}$.

x -অক্ఘ বর্গাবর গতিশীল 0.02 kg डর্রের একটি কণার স্থিতিশক্তি $\mathrm{V}=\mathrm{Ax}(x-4) \mathrm{J}$, যেখানে A একটি夕্রবক এবং x মিটlর্র এককে প্রকাশিত। নিচের কোন্ উক্তি/উক্তিঋলি সর্ত্য ?
(A) কণাঢির্র উপর্র প্রযুক্ত বলের্র মান ধ্রবক।
(B) কণাটি সর্রল দোলগতি সমপন্ন কর্রে।
(C) $x=2 \mathrm{~m}$ বিম্দূতে কণাটির বেগ সর্বাধিক।
(D) কণাটি্র দোলগতিব্র দোলনকাল $\frac{\pi}{5} \mathrm{sec}$

A particle of mass m and charge q moving with velocity v enters region- from region-a along the normal to the boundary as shown is the figure. Region-b has a uniform magnetic field B perpendicular to the plane of the paper. Also, region- b has length L . Choose the correct statements :
(A) The particle enters region-c only if $\mathrm{v}>\frac{\mathrm{qLB}}{\mathrm{m}}$
(B) The particle enters region-c only if $\mathrm{v}<\frac{\mathrm{qLB}}{\mathrm{m}}$
(C) Path of the particle is a circle in region-b
(D) Time spent in region-b is independent of velocity v

প্রদর্শিত চিভ্রের্ন মতো, m ভর্ব ও q आधানের একটি কণা v বেগে a-অঞ্চল থেকে বিভেদ তলের লম্ব
 B आशে। यमि b-অঞ্চলের্র দৈর্য্য L হয় তবে নীচের কোন্ উক্তি/উক্তঋলি সত্য ?
(A) কণাणि c -অঞ্ধलে প্রবেশ কর্রবে यमि $\mathrm{v}>\frac{\mathrm{qLB}}{\mathrm{m}}$ इয়
(B) কभाটি c-অধ্পवে প্রবেশ কন্নবে यमि $\mathrm{v}<\frac{\mathrm{qLB}}{\mathrm{m}}$ হয়
(C) b-অঞ্চलে কণাটিন্ন সঞ্চারপথ বৃত্তাকার।
(D) b-অঞ্চলে কণাটির দ্বার্যা ব্যয্রিত সময় গতিবেগ v-এর উপর নির্ভর করে না।

CHEMISTRY

Category-I (Q 41 to 70)
Category-I : Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 4$ mark will be deducted

41. The exact order of boiling points of the compounds n-pentane, isopentane, butanone and 1-butanol is
(A) n-pentane $<$ isopentane $<$ butanone <1-butanol
(B) isopentane $<\underline{n}$-pentane $<$ butanone <1-butanol
(C) butanone $<\underline{n}$-pentane $<$ isopentane <1-butanol
(D) 1-butanol < butanone < n-pentane < isopentane
n-পেন্টেন, আইসোপেন্টেন, বিউটানোন ও 1-বিউটানল যৌগఱলির্ন স্যুটনাক্কেন সঠিক ক্রমটি হলো
(A) \underline{n}-পেন্টেন < আইসোপেন্টেন < বিউটানোন < 1-বিউটানল
(B) আইসোপেন্টেন < n-পেন্টেন < বিউটানোন < 1-বিউটানল
(C) বিউটানোন < \underline{n}-পেন্টেন < আইসোপেন্টেন < 1-বিউটানল
(D) 1-বিউটানল < বিউটানোন < n-
42. The maximum number of atoms that can be in one plane in the molecule p -nitrobenzonitrile are
(A) 6
(B) 12
(C) 13
(D) 15
p-নাইব্রোবেঞ্জোনাইদ্রাইল অনুট্রি্র একটি তলে থাকতে পারে এর্পপ সর্বাধিক পর্রমানুর সংখ্যা হলো
(A) 6
(B) 12
(C) 13
(D) 15
43. Cyclo [18]carbon is an allotrope of carbon with molecular formula C_{18}. It is a ring of 18 carbon atoms, connected by single and triple bonds. The total number of triple bonds present in this cyclocarbon are
(A) 9
(B) 10
(C) 12
(D) 6
C_{18} आनবিক সংকেত বিশিষ্ট সাইক্লো [18] কার্বন হলো কার্বনের একটি ক্রপভেদ। 18 টি কার্বন এই

(A) 9
(B) 10
(C) 12
(D) 6
44. p-nitro - N, N - dimethylaniline cannot be represented by the resonating structures

(I):

(估 (III)
(B) II and IV
(A) I and II.
(C) I and III
(IV)
(D) III and IV

(II)

45.
1.

2.

and

3.
 and

The relationship between the pair of compounds shown above are respectively
(A) Homomer (identical), enantiomer and constitutional isomer
(B) Enantiomer, enantiomer and diastereomer
(C) Homomer (identical), homomer (identical) and constitutional isomer
(D) Enantiomer, homomer (identical) and geometrical isomer

উপরে প্রদর্শিত যৌগ জোড়া ঞলির মধ্যে পার্পস্পর্রিক সম্পর্ক হল যথাক্রমে
(A) হোমোমান্গ (সমद্দপ), প্রতিবিম্ব সমাবয়ব এবং গঠন সমাবয়ব
(B) প্রতিবিম্ব সমাবয়ব, প্রতিবিম্ব সমাবয়ব, ডাইস্টের্রিয়োমার
(C) হোমোমার (সমর্দপ), হোমোমার (সমক্রপ), গঠন সমাবয়ব
(D) প্রতিবিম্ব সমাবয়ব, হোমোমার (সমক্রপ) এবং জ্যামিতিক সমাবয়ব
46. The exact order of acidity of the compounds p-nitrophenol, acetic acid, acetylene and ethanol is
(A) p-nitrophenol < acetic acid < acetylene < ethanol
(B) acetic acid < p-nitrophenol < acetylene < ethanol
(C) acetylene < p-nitrophenol < ethanol < acetic acid
(D) acetylene < ethanol < p-nitrophenol < acetic acid
p-নাইট্রোফেনन, অ্যাসেটিক অ্যাসিড, অ্যাসেটিলিন ও ইथানল যৌগখলির মধ্যে অম্লতার্থ যथার্থ ক্রম হল
(A) p-নাইর্রোফেনল < অ্যাসেটিক অ্যাসিড < অ্যাসেणिলিন < ই ইथানল
(B) অ্যসেটিক অ্যাসিড < p-নাইট্রোফেনन < অ্যাসেणिলিন < ইथाনল
(C) অ্যাসেणिলিन < p -नाইট্রোফেন্নল < ইथानल < অ্যাসেणिক অ্যাসিড

47.
1.

2.

3.

4.

The dipeptides which may be obtained from the amino acids glycine and alanine are
(A) only 1
(B) only 2
(C) both 1 and 2
(D) all of them

অ্যামিনো অ্যাসিড গাইসিন ও অ্যালানিন থেকে যে ডাইপেপ্টাইডখলি উৎপম হতে পার্রে সেখলি হলো
(A) কেবলমাত্র 1
(B) কেবলমাত্র 2
(C) উভ্য় 1 এবং 2
(D) সবЖলि
48. Benzaldehyde + methanol $\xrightarrow[\mathrm{HCl}]{\mathrm{dry}} \mathrm{A} \xrightarrow[\substack{\text { 2. }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \\ \mathrm{CH}_{3} \mathrm{COONa}}]{\text { 1. dil } \mathrm{HCl}} \mathrm{B}$

বেঞ্জালডিহাইড + মিथানল $\underset{\mathrm{HCl}}{\text { उফক }} \mathrm{A} \xrightarrow[\text { 2. }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}]{\text { 1. লघू } \mathrm{HCl}} \mathrm{B}$ $\mathrm{CH}_{3} \mathrm{COONa}$

The compounds A and B above are respectively
উপর্রের A এবং B যৌগদ্যয় যथাক্রুমে
(A)

(B)

(C)

(D)

$\overline{0}$.
49. For a spontaneous reaction at all temperatures which of the following is correct?
(A) Both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive
(B) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative
(C) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive
(D) Both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are negative

(A) $\Delta \mathrm{H}$ ও $\Delta \mathrm{S}$ উভয়্যই ধनाত়ক
(B) $\Delta \mathrm{H}$ ४नाত্র ও $\Delta \mathrm{S}$ ঋণाত্রक
(C) ΔH ঋণाতৃক ও $\Delta \mathrm{S}$ ধनाতৃক
(D) $\Delta \mathrm{H}$ ও $\Delta \mathrm{S}$ উड्याই ঋवाত़क
50. A given amount of Fe^{2+} is oxidized by $x \mathrm{~mol}$ of MnO_{4}^{-}in acidic medium. The number of moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ required to oxidize the same amount of Fe^{2+} in acidic medium is
(A) x
(B) $0.83 x$
(C) $2.0 x$
(D) $1.2 x$

অ্যাসিড মাধ্যমে, নিদিষ্ট পর্রিমাণ $\mathrm{Fe}^{2+} x$ মোল MnO_{4}^{-}घ্বার্গা জার্রিত रয়। অ্যাসিড মাধ্যমে ঔ পর্পিমাণ Fe^{2+} এর্র জার্যণের জন্য যে মোল সং খ্যক $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ প্রয়োজন সেটি হল
(A) x
(B) $0.83 x$
(C) $2.0 x$
(D) $1.2 x$
51. An element crystallizes in a body centred cubic lattice. The edge length of the unit cell is 200 pm and the density of the element is $5.0 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the number of atoms in 100 g of this element.
(A) 2.5×10^{23}
(B) 2.5×10^{24}
(C) 5.0×10^{23}
(D) 5.0×10^{24}

একটি মৌল দেহকেন্দ্রিক ঘনকাকার কেলাস গঠন করে। উক্ত কেলাসের্ একক কোষের কিনার্রা দৈর্যা 200 pm এবং মৌলেব্র ঘনত্ হল $5.0 \mathrm{~g} \mathrm{~cm}^{-3} । 100 \mathrm{~g}$ ঐ মৌলে পর্রমাণু সংখ্যা নির্ণয় কর।
(A) 2.5×10^{23}
(B) 2.5×10^{24}
(C) 5.0×10^{23}
(D) 5.0×10^{24}
52. Molecular velocities of two gases at the same temperature (T) are u_{1} and u_{2}. Their masses are m_{1} and m_{2} respectively. Which of the following expressions is correct at temperature T ?
(A) $\frac{\mathrm{m}_{1}}{\mathrm{u}_{1}{ }^{2}}=\frac{\mathrm{m}_{2}}{\mathrm{u}_{2}{ }^{2}}$
(B) $\mathrm{m}_{1} \mathrm{u}_{1}=\mathrm{m}_{2} \mathrm{u}_{2}$
(C) $\frac{m_{1}}{u_{1}}=\frac{m_{2}}{u_{2}}$
(D) $m_{1} u_{1}{ }^{2}=m_{2} u_{2}{ }^{2}$

এঝই তাপমাজায় (T), দूটি গ্যাসের্র অণুর গতিবেগ u_{1} এবং u_{2} এবং উহাদের অণুর ডর যथাজমে m_{1} এবং m_{2} इलে T তাপমাএ্রায় নিম্নলিখিত্লির্র মধ্যে কোনটি সঠিক?
(A) $\frac{m_{1}}{u_{1}{ }^{2}}=\frac{m_{2}}{u_{2}{ }^{2}}$
(B) $m_{1} u_{1}=m_{2} u_{2}$
(C) $\frac{m_{1}}{u_{1}}=\frac{m_{2}}{u_{2}}$
(D) $m_{1} u_{1}^{2}=m_{2} u_{2}^{2}$
53. When 20 g of naphthoic acid $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ is dissolved in 50 g of benzene, a freezing point depression of 2 K is observed. The vant Hoff factor (i) is $\left[\mathrm{K}_{\mathrm{f}}=1.72 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
(A) 0.5
(B) 1.0
(C) 2.0
(D) 3.0

20 g न्याপথোয়িক অ্যাসিড $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}\right), 50 \mathrm{~g}$ বেঞ্জিনে দ্রবীভূত रলেে হিমাক্চের অবनমनের্र মান হয্য 2 K । ভ্যান্ট হফ ফ্যাষ্টর (i) এর মান হল [$\left.\mathrm{K}_{\mathrm{f}}=1.72 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
(A) 0.5
(B) 1.0
(C) 2.0
(D) 3.0
(C) 2.0
71, $i=$
$2=1 \cdot 7$
54. The equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ is 4×10^{-4} at 2000 K . In presence of a catalyst the equilibrium is attained 10 times faster. Therefore, the
(A) 4×10^{-4}
(B) 4×10^{-3}
(C) 4×10^{-5}
(D) 2.5×10^{-4}
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}), 2000 \mathrm{~K}$ তाপমাত্রায় বিক্রিয়াট্রি সাম্য ধ্রবকেব্র মান 4×10^{-4} । অনুघটকের উপস্ছিতিতে বিত্রিযয়াটি 10 ণ দ্রূত গতিতে সাম্যে উপনীত হইলে, 2000 K তाপমাত্রায়
অনুঘটকের্প উপস্ছিতিতে সাম্য ধ্রবকেব্র মান হবে
(A) 4×10^{-4}
(B) 4×10^{-3}
(C) 4×10^{-5}
(D) 2.5×10^{-4}
55. Under the same reaction conditions, initial concentration of $1.386 \mathrm{~mol} \mathrm{dm}^{-3}$ of a substance becomes half in 40 s and 20 s through first-order and zero-order kinetics respectively. Ratio $\left(\frac{k_{1}}{k_{0}}\right)$ of the rate constants for first-order $\left(k_{1}\right)$ and zero-order $\left(k_{0}\right)$ of
the reactions is
(A) $0.5 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
(B) $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $2.0 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$

একই শর্ত সাপেল্মে, একটি পদার্থের প্রাবন্ভিক গাত়্ $1.386 \mathrm{~mol} \mathrm{dm}^{-3}$ অর্দ্ধেকে পরিণত হতে প্রথমক্রুম বিক্রিয়ায় 40 s এবং শূণ্য-ब্রాম বিক্রিয়ায় 20 s সময় লাগে। প্রথম-बম $\left(\mathrm{k}_{1}\right)$ এবং শুণ্য-ক্রুম
$\left(\mathrm{k}_{0}\right)$ বিক্রিয়া দুটির্র হার ধ্রবকেব্র অনুপাত $\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}\right)$ इन

$$
a_{0}=1.3
$$

(A) $0.5 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
(B) $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $2.0 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$

$$
t=40 \mathrm{~s}
$$

56. Which one of the following solutions will have highest conductivity?
(A) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(B) 0.1 M NaCl
(C) $0.1 \mathrm{M} \mathrm{KNO}_{3}$
(D) 0.1 M HCl
$\pi, K_{1}=\frac{2.303}{40}$
নিম্নলিখিত দ্রবণઋলির্র মধ্যে কোনটি্র আপেস্মিক পর্নিবাহিতা সর্বাধিক ?
(A) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(B) 0.1 M NaCl
(C) $0.1 \mathrm{M} \mathrm{KNO}_{3}$
(D) 0.1 M HCl
$=\frac{2.303}{4.0} l$
57. Indicate the products (X) and (Y) in the following reactions :

$$
\begin{array}{ll}
\mathrm{Na}_{2} \mathrm{~S}+\mathrm{nS}(\mathrm{n}=1-8) & \rightarrow(\mathrm{X}) \\
\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{S} & \rightarrow(\mathrm{Y}) \\
(\mathrm{X}) & (\mathrm{Y})
\end{array}
$$

(A) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$\mathrm{Na}_{2} \mathrm{~S}_{2}$
(B) $\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{n}+1)}$
(C) $\mathrm{Na}_{2} \mathrm{~S}_{\mathrm{n}}$
(D) $\mathrm{Na}_{2} \mathrm{~S}_{5}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$

$$
203+220
$$

- 0.4
$\left.{ }^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15}(\mathrm{M})$ HCl in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is $\left(\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}\right.$, at $25^{\circ} \mathrm{C}$)
(A) $3.7 \times 10^{-13}(\mathrm{M})$
(B) $3.2 \times 10^{-7}(\mathrm{M})$
(C) $3.2 \times 10^{-2}(\mathrm{M})$
(D) $2.7 \times 10^{-2}(\mathrm{M})$
$25^{\circ} \mathrm{C}$ উষ্ণতায়, জলীয় দ্রবণে $2.5 \mathrm{ml} .0 .4(\mathrm{M})$ একটি মৃদू এক-আম্লিক ক্ষার্রক $\left(\mathrm{k}_{\mathrm{b}}=1 \times 10^{-12}\right.$, $25^{\circ} \mathrm{C}$ উষ্ষতায়) $\frac{2}{15}$ (M) HCl দ্রবণ দ্বার্মা টাইট্রেশন কর্রা হল। প্রশমণ বিন্দূতে H^{+}এর গাড়ত্ হল

$$
\left(\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}, 25^{\circ} \mathrm{C} \text { উষ্ণতায় }\right)
$$

(A) $3.7 \times 10^{-13}(\mathrm{M})$
(B) $3.2 \times 10^{-7}(\mathrm{M})$
(C) $3.2 \times 10^{-2}(\mathrm{M})$
(D) $2.7 \times 10^{-2}(\mathrm{M})$
59. Solubility products $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of the salts of types $\mathrm{MX}, \mathrm{MX}_{2}$ and $\mathrm{M}_{3} \mathrm{X}$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively. Solubilities (in mol dm${ }^{-3}$) of the salts at temperature T are in the order
(A) $\quad M X>M_{2}>M_{3} X$
(B) $\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}>\mathrm{MX}$
(C) $\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}$
(D) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$

T তাপমাত্রায়, তিনটি লবণ MX, MX ${ }_{2}$ এবং $\mathrm{M}_{3} \mathrm{X}$ এর্র দ্রাব্যতা ӊণফলের মানঋলি যথার্রমে $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ এবং $2.7 \times 10^{-15} \mathrm{~T}$ তাপমাত্রায় ঐ তিনটি লবণের দ্রাব্যতার $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ মানেব্র ক্রম निম্নক্గপ
(A) $\quad \mathrm{MX}>\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}$
(B) $\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}>\mathrm{MX}$
(C) $\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}$
(D) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$
60. The reduction potential of hydroen half-cell will be negative if
(A) $\mathrm{p}\left(\mathrm{H}_{2}\right)=1 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}$
(B) $\mathrm{p}\left(\mathrm{H}_{2}\right)=1 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=2.0 \mathrm{M}$
(C) $\mathrm{p}\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}$
(D) $\mathrm{p}\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=2.0 \mathrm{M}$

হাইড্রোজেন অর্দ্প-কোষের বিজার্রণ বিভব ঋণাত্মক হবে यদি
(A) $\mathrm{p}\left(\mathrm{H}_{2}\right)=1 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}$
(B) $\mathrm{p}\left(\mathrm{H}_{2}\right)=1$ atm and $\left[\mathrm{H}^{+}\right]=2.0 \mathrm{M}$
(C) $\mathrm{p}\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}$
(D) $\mathrm{p}\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left[\mathrm{H}^{+}\right]=2.0 \mathrm{M}$
61. A saturated solution of BaSO_{4} at $25^{\circ} \mathrm{C}$ is $4 \times 10^{-5} \mathrm{M}$. The solubility of BaSO_{4} in 0.1 M $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at this temperature will be
(A) $1.6 \times 10^{-9} \mathrm{M}$
(B) $1.6 \times 10^{-8} \mathrm{M}$
(C) $4 \times 10^{-6} \mathrm{M}$
(D) $4 \times 10^{-4} \mathrm{M}$ $25{ }^{\circ} \mathrm{C} এ \mathrm{BaSO}_{4}$-এর একটি সমপৃক্ত দ্রবণেন্ন গাত্ত $4 \times 10^{-5} \mathrm{M}$ । बই তাপমাজ্যায় 0.1 M भाছ $\mathrm{Na}_{2} \mathrm{SQ}_{4}$ দ্রবণে BaSO_{4}-এর্র দ্রাব্যতা হবে :
(A) $1.6 \times 10^{-9} \mathrm{M}$
(B) $1.6 \times 10^{-8} \mathrm{M}$
(C) $4 \times 10^{-6} \mathrm{M}$
(D) $4 \times 10^{-4} \mathrm{M}$
62. A solution is made by a concentrated solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ with a concentrated solution of NaNO_{2} in 50% acetic acid. A solution of a salt containing metal M is added to the
mixture, when a yellow precipitate is formed. Metal ' M ' is:
(A) Magnesium
(B) Sodium
(C) Potassium
(D) Zinc
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$-এর্র গাছ দ্রবণের্গ সাথে 50% অ্যাসিটিক অ্যাসিডে NaNO_{2} এর্র একটি গাছ দ্রবণ মিথ্রিত কব্রা
 धাতু 'M' টि হল :
(A) ম্যাগনেসিয়াম
(B) সোডিয়াম
(C) পটািিয়াম
(D) बिक्ष
63. Extraction of a metal (M) from its sulfide ore $\left(\mathrm{M}_{2} \mathrm{~S}\right)$ involves the following chemical reactions:

$$
\begin{aligned}
& 2 \mathrm{M}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \xrightarrow{\text { heat }} 2 \mathrm{M}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \uparrow \\
& \mathrm{M}_{2} \mathrm{~S}+2 \mathrm{M}_{2} \mathrm{O} \xrightarrow{\text { heat }} 6 \mathrm{M}+\mathrm{SO}_{2} \uparrow \\
& \text { The metal (M) may be }
\end{aligned}
$$

(A) Zn
(B) Cu
(C) Fe
(D) Ca

কোন (M) ধাতুর্র সালফাইড আকব্রিক $\left(\mathrm{M}_{2} \mathrm{~S}\right)$ থেকে ধাতুট্টি নিফ্কাশন কব্রতে নীচের্র ব্রাসায়নিক বিজ্রিয়াশ্রুি ঘটে থাকে।

$$
\begin{aligned}
& 2 \mathrm{M}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \xrightarrow{\text { heat }} 2 \mathrm{M}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \uparrow \\
& \mathrm{M}_{2} \mathrm{~S}+2 \mathrm{M}_{2} \mathrm{O} \xrightarrow{\text { heat }} 6 \mathrm{M}+\mathrm{SO}_{2} \uparrow \\
& \text { (M) ধাতুটি হতে পার্রে }
\end{aligned}
$$

(A) Zn
(B) Cu
(C) Fe
(D) Ca
64. The white precipitate (Y), obtained on passing colourless and odourless gas (X) through an ammoniacal solution of NaCl , loses about 37% of its weight on heating and a white residue (Z) of basic nature is left. Identify $(\mathrm{X}),(\mathrm{Y})$ and (Z) from following sets.
অ্যামোনিয়াকাল NaCl দ্রবণে একট匕 বর্রহীন ও গঙ্ধহীন গ্যাস (X) চালনা কর্রলে যে সাদা অষঃক্ষেপ (Y) পাওয়া যায়, সেট্রিকে উত্তe্ত কর্রলে তাব্র ওজন প্রায় 37% হ्राস পায় এবং সাদা क্মাব্রকষর্মী একটি অবশেষ
(Z) থাকে। নীচের সেটেলি থেকে (X), (Y) এবং (Z) সনাক্ত কন।

	(X)	(Y)	
(A)	N_{2}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	$\mathrm{NH}_{4} \mathrm{Cl}$
(B)	O_{2}	$\mathrm{NaNH}_{4} \mathrm{CO}_{3}$	NaHCO_{3}
(C)	CO_{2}	$\mathrm{NH}_{4} \mathrm{HCO}_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(D)	CO_{2}	NaHCO_{3}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$

65. Which structure has delocalised π-electrons ?
(A) O_{3}
(B) CO
(C) HCN
(D) O_{3} and HCN

কোন গঠনট্রি মধ্যে বিকেন্দ্রিভূত (delocalised) π-ইলেকদ্দ্রন आছে ?
(A) O_{3}
(B) CO
(C) HCN
(D) O_{3} এবং HCN
66. The $\mathrm{H}_{3} \mathrm{O}^{+}$ion has the following shape
(A) Tetrahedral
(B) Pyramidal
(C) Triangular planar
(D) "T" shaped
$\mathrm{H}_{3} \mathrm{O}^{+}$আয়নের আকার নিম্নক্মপ
(A) চছুস্তলকিয়
(B) পिব্রামিডিয়
(C) সামতলিক ब্রিকোনাকার্গ
(D) "T" আকৃতিন্থ
67. For the reaction ${ }^{14} \mathrm{~N}(\alpha, \mathrm{p}){ }^{17} \mathrm{O}, 1.16 \mathrm{MeV}$ (Mass equivalent $=0.00124 \mathrm{amu}$) of energy is absorbed. Mass on the reactant side is 18.00567 amu and proton mass $=1.00782 \mathrm{amu}$. The atomic mass of ${ }^{17} \mathrm{O}$ will be
(A) 17.0044 amu
(B) 16.9991 amu
(C) 17.0114 amu
(D) 16.9966 amu ${ }^{14} \mathrm{~N}(\alpha, p){ }^{17} \mathrm{O}$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভব্রশক্তিতুল্যতত $=0.00124 \mathrm{amu}$) শক্তি শোষিত হয়। বিক্রিয়াকাব্রী পদার্থের দিকেন্র ভর 18.00567 amu এবং প্রোটনেন্র ভর্থ $=1.00782 \mathrm{amu}$ रলে ${ }^{17} \mathrm{O}$ এর
পার্রমাণবি ভর্ন হবে
(A) 17.0044 amu
(B) 16.9991 amu
(C) 17.0114 amu
(D) $\quad 16.9966 \mathrm{amu}$
68. A solution of NaNO_{3}, when treated with a mixture of Zn dust and ' A ' yields ammonia. ' A ' can be
(A) caustic soda
(B) dilute sulphuric acid
(C) concentrated sulphuric acid
(D) sodium carbonate
NaNO_{3} এর দ্রবণে Zn পাউডাব্র এবং 'A’-এत्र একটি মিশ্রন যোগ কর্গা হলে অ্যামোনিয়া উৎপম্ন হয়। 'A' হতে পারে
(A) কষ্টিক সোডা
(B) লঘু সালফিউর্রিক অ্যাসিড
(C) গাছ সালফিউব্রিক অ্যাসিড:
(D) সোডিয়াম কার্বোনেট
69. Indicate the number of unpaired electrons in $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ এবং $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ এর বিজোড় ইলেকদ্র্রন সংথ্যা নির্দেশ কর :

$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$	$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
1	0
5	6
6	5
0	1

70. Which of the following compounds have magnetic moment identical with $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$?
(A) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(D) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4+}$

निম্নলিখিত কোন যৌগणির্র চৌম্বকভ্রামক $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ এत স সান হবে ?
(A) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+1}$
(D) $\quad\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4+}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2}\right)_{6}\right]$
(A)
(B)
(C)
(D)

Category-II (Q 71 to 75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 2$ mark will be deducted.

 मिलে $1 / 2$ नश्रव বাणl याবে।
71. Among the following chlorides the compounds which will be hydrolysed most easily and most slowly in aqueous NaOH solution are respectively

1. Methoxymethyl chloride
2. Benzyl chloride
3. Neopentyl chloride
4. Propyl chloride
(B) 2 and 3
(A) 1 and 3
(C) 2 and 4
(D) 3 and 1

নীচের্র ক্রোব্রাইডঋিল্র মধ্যে যে যৌগఆলির জলীয় NaOH দ্রবণে সর্বাপেক্巾া সহজে এবং সর্বাপেক্巾া ধীব্রগতিতে আর্দ্রবিশ্লেষণ হবে সেঙলি যথাক্রুমে

1. মিধ্্িমিথাইল ক্রোব্রাইড
2. বেঞাইল ক্রোব্রাইড
3. निওপেন্টাইল ক্রোর্রাইড
(A) 1 এবः 3
(B) 2 এবः 3
(C) 2 এবং 4
(D) 3 এব: 1
4. গ্রোপাইল ক্রোব্রাইড
5. The products \underline{X} and \underline{Y} which are formed in the following sequence of reactions are respectively

$$
\text { Phenol } \left.\xrightarrow{\text { dil } \mathrm{HNO}_{3}} \underline{\mathrm{X}} \xrightarrow\left[\text { 2. (} \mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \text { (1 equiv.) }\right]{1 . \mathrm{Zn} / \mathrm{HCl}, \Delta} \mathrm{Y}
$$

$$
\text { Phenol } \xrightarrow{\text { बशू } \mathrm{HNO}_{3}} \underset{\text { 2. }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(1 \text { पून्गाई })}{1 . \mathrm{Zn} / \mathrm{HCl}, \Delta} \underline{Y}
$$

(A)

(B)
 and

(C)

(D)

73. The atomic masses of helium and neon are 4.0 and 20.0 amu respectively. The value of the de Broglie wavelength of helium gas at $-73^{\circ} \mathrm{C}$ is M times the de Broglie wavelength of neon at $727^{\circ} \mathrm{C}$. The value of M is
(A) 5
(B) 25
(C) $\frac{1}{5}$
(D) $\frac{1}{25}$

 মান হল
(A) 5
(B) 25
(C) $\frac{1}{5}$
(D) $\frac{1}{25}$
74. The mole fraction of a solute in a binary solution is 0.1 . At 298 K , molarity of this solution is same as its molality. Density of this solution at 298 K is $2.0 \mathrm{~g} \mathrm{~cm}^{-3}$. The ratio of molecular weights of the solute and the solvent ($\left.M_{\text {solute }} / M_{\text {solvent }}\right)$ is
(A) 9
(B) $\frac{1}{9}$
(C) 4.5
(D) $\frac{1}{4.5}$

এबটि ছি-দ্রবণে (binary solution) দ্রাবের্প মোল ভদ্মাংশ হল 0.1 । 298 K তাপমাত্রায়, ঐ দ্রবণের্র মোলার্গ গাছ়্ এবং মোলাল গাছত্ উভয্যের্ন মান সমান এবং দ্রবণের্র ঘনত্রের মান $2.0 \mathrm{~g} \mathrm{~cm}^{-3}$ । দ্রাব এবং দ্রাবকেত্র आণবিক গুক্রত্বের্থ অনুপাত $\left(\mathrm{M}_{\text {solute }} / \mathrm{M}_{\text {solvent }}\right)$)ল
(A) 9
(B) $\frac{1}{9}$
(C) . 4.5
(D) $\frac{1}{4.5}$
75. 5.75 mg of sodium vapour is converted to sodium ion. If the ionisation energy of sodium is $490 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and atomic weight is 23 units, the amount of energy needed for this conversion will be
(A) 1.96 kJ
(B) 1960 kJ
(C) 122.5 kJ
(D) 0.1225 kJ
5.75 mg সোডিয়াম বাশকে সোডিয্যাম আয়নে ক্గপাল্ঠব্রিত কর্রা হল। যদি সোডিয়ামের্র আয়নন শক্তিব্র (ionisation energy) মান $490 \mathrm{~kJ} \mathrm{~mol}^{-1}$ এবং পাব্মমাণবিক অর্ৰত্ণ 23 unit হয়, তবে এই র্রপান্তরে শজ্তি প্রয়োজন হবে
(A) 1.96 kJ
(B) 1960 kJ
(C) 122.5 kJ
(D) 0.1225 kJ

Category-III (Q 76 to 80)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score $=2 \times$ number of correct answers
marked - actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but
there is no negative marking for the same and zero mark will be awarded.

76. The product(s) in the following sequence of reactions will be

$$
\begin{aligned}
& \text { 1. } \mathrm{Na} / \mathrm{NH}_{3} \text { (liq.) } \\
& \mathrm{Me}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me} \xrightarrow[\text { 2. dil. alkaline } \mathrm{KMnO}_{4}]{\text { ethanol, }-33^{\circ} \mathrm{C}} \text { Product (s) }
\end{aligned}
$$

নীচেব্র বিক্রিয়্যাজ্রম্মে উৎপন্ন পদার্থ (अলি) হন

(A)

(B)

(C)

(D)

77. The compounds X and Y are respectively X এবং Y যৌগদ্যয় যথাক্রমে,

(A)
 and

(B)

and

(C)

(D)

78. Aqueous solution of $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical (are)
(A) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
(C) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
(B) KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
একই গাছ্রেত্রে $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$ এবং (D) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ দুটি দ্রবণ বা যে যে দ্রবণ দুটির মিশ্রণ বাফার হবে তা হল
(A) HNO_{3} এবং $\mathrm{CH}_{3} \mathrm{COOH}$
(C) HNO_{3} এবং $\mathrm{CH}_{3} \mathrm{COONa}$
(B) KOH এবং $\mathrm{CH}_{3} \mathrm{COONa}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$ এবং $\mathrm{CH}_{3} \mathrm{COONa}$
79. Reaction of silver nitrate solution with phosphorous acid produces:
(A) Silver phosphite
(C) Metallic silver
(B) Phosphoric acid
ফসফ্র্রাস অ্যাসিডের সহিত সিলভার্র নাইট্রেট দ্রবণের্ন বিক্রিয়ায় তৈর্মী হবে:
(A) সিলভান্র ফসফাইট
(C) ধাতব সিলভান্র
(B) एসखব্বিক অ্যাসিড
(D) সিলভার ফসফেট
80. $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ show similarity in
(A) Density
(C) Oxidising nature
(B) Reducing nature
$\mathrm{N}_{2} \mathrm{H}_{4}$ এবং $\mathrm{H}_{2} \mathrm{O}_{2}$ এর মধ্যে সাদৃশ্য হল
(A) घनত̆
(B) বিজান্রণ প্রকৃতি
(C) জার্রণ প্রকৃতি
(D) কেন্দ্রিক মৌলের সংকরায়ণ

C

